Metabolomics Analysis Reveals that AICAR Affects Glycerolipid, Ceramide and Nucleotide Synthesis Pathways in INS-1 Cells

نویسندگان

  • Mahmoud A. ElAzzouny
  • Charles R. Evans
  • Charles F Burant
  • Robert T. Kennedy
  • Rohit Kulkarni
چکیده

AMPK regulates many metabolic pathways including fatty acid and glucose metabolism, both of which are closely associated with insulin secretion in pancreatic β-cells. Insulin secretion is regulated by metabolic coupling factors such as ATP/ADP ratio and other metabolites generated by the metabolism of nutrients such as glucose, fatty acid and amino acids. However, the connection between AMPK activation and insulin secretion in β-cells has not yet been fully elucidated at a metabolic level. To study the effect of AMPK activation on glucose stimulated insulin secretion, we applied the pharmacological activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to an INS-1 (832/13) β-cell line. We measured the change in 66 metabolites in the presence or absence of AICAR using different stable isotopic labeled nutrients to probe selected pathways. AMPK activation by AICAR increased basal insulin secretion and reduced the glucose stimulation index. Although ATP/ADP ratios were not strongly affected by AICAR, several other metabolites and pathways important for insulin secretion were affected by AICAR treatment including long-chain CoAs, malonyl-CoA, 3-hydroxy-3 methylglutaryl CoA, diacylglycerol, and farnesyl pyrophosphate. Tracer studies using 13C-glucose revealed lower glucose flux in the purine and pyrimidine pathway and in the glycerolipid synthesis pathway. Untargeted metabolomics revealed reduction in ceramides caused by AICAR that may explain the beneficial role of AMPK in protecting β-cells from lipotoxicity. Taken together, the results provide an overall picture of the metabolic changes associated with AICAR treatment and how it modulates insulin secretion and β-cell survival.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Anticancer Effect of Xanthium Strumarium Root Extract on Human Epithelial Ovarian Cancer Cells Using 1H NMR-Based Metabolomics

Epithelial Ovarian cancer is the leading cause of cancer mortality among women all over the world. As chemotherapeutics has many side effects, researchers have focused on the potential use of medicinal plants as natural antitumor agents. Xanthium strumarium studied in this work as an herbal anticancer agent. This study aimed to evaluate the antitumor effect and metabolic alterations ca...

متن کامل

Metabolomics of the effect of AMPK activation by AICAR on human umbilical vein endothelial cells.

AMP-activated protein kinase (AMPK) is a metabolic master switch expressed in a great number of cells and tissues. AMPK is thought to modulate the cellular response to different stresses that increase cellular AMP concentration. The adenosine analog, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) is an AMPK activator used in many stud...

متن کامل

Metabolomics approach reveals urine biomarkers and pathways associated with the pathogenesis of lupus nephritis

Objective(s): lupus nephritis (LN) is a severe form of systemic lupus erythematosus (SLE) with renal complications. Current diagnosis is based on invasive renal biopsy and serum antibodies and complement levels that are not specific enough. The current study aims to identify new biomarker candidates for non-invasive diagnosis of LN and explore the pathogenic mechanisms...

متن کامل

Metabolomics identifies pyrimidine starvation as the mechanism of 5 - aminoimidazole - 4 - carboxamide - 1 - β - riboside ( AICAr ) induced apoptosis in multiple myeloma cells

3 Running Title: Pyrimidine starvation in multiple myeloma cells Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. ABSTRACT To investigate the mechanism by which AICAr induces apoptosis in multiple myeloma (MM) cells, we performed an unbiased metabolomics screen. AICAr had selective effects on nucleotide metabolism, resulting in an increase in...

متن کامل

Metabolomics identifies pyrimidine starvation as the mechanism of 5-aminoimidazole-4-carboxamide-1-β-riboside-induced apoptosis in multiple myeloma cells.

To investigate the mechanism by which 5-aminoimidazole-4-carboxamide-1-β-riboside (AICAr) induces apoptosis in multiple myeloma cells, we conducted an unbiased metabolomics screen. AICAr had selective effects on nucleotide metabolism, resulting in an increase in purine metabolites and a decrease in pyrimidine metabolites. The most striking abnormality was a 26-fold increase in orotate associate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015